Heterogeneous Catalysis for Chemical Processing, Energy Conversion and Environmental Protection
The projects in this research focus on investigating the catalytic properties of supported metal catalysts for selective hydrogenation and on bio-oil production and on biodiesel conversion.
Abstract
Dr. Jang's recent research effort includes two main projects. The first project is focused on the investigation of the catalytic properties of supported metal catalysts for selective hydrogenation, including compounds with a triple bond. It is our goal to develop and design a more efficient catalyst, with high selectivity and good conversion, for selective hydrogenation of industrial processes, such as the multi-billion dollar polyethylene industry. Non-thermal plasma treatments are applied to noble metal catalysts to obtain novel catalytic materials. Characterizations of catalysts prepared by impregnation, precipitation, ion exchange and others were routinely carried out by various instrumentation techniques, such as DSC (Differential Scanning Calorimetry), in situ FT-IR (Fourier Transform Infrared spectroscopy), chemisorption, temperature programmed adsorption/desorption, etc.
Although any reaction on the catalyst surface is complicated, the selective hydrogenation of acetylene can be shown schematically in the figure below, including adsorption, surface reaction and desorption while catalyst properties could be changed by various procedures, such as reduction, oxidation, plasma, etc.
Another project focuses on bio-oil production from biomass and wastes and the synthesis of carbon-based acid catalysts for biodiesel conversion using oleic acid esterification with methanol as the probe reaction. For bio-oil production, biomass or wastes will go through hydrothermal liquefaction processes followed by separation, identification and quantification to characterize the content and composition of the bio-oil. For carbon-based acid catalysts, the tasks would focus on using starch-related materials to prepare catalysts with a high density of acid sites via partial carbonization in N2 followed by sulfonation.